

# **Expression calculator (ExpCalc)**

Introduction

Expression Calculator Written by WILLEMS Gunther https://guntherwillems.com/expression-calculator

This program is Freeware

With the calculator you can:

- Calculate expressions of an <u>infinite</u> length and complexity.
- Store an <u>infinite</u> number of lines containing expressions for reference or later use.
- Create an <u>infinite</u> number of user variables.
- Create an <u>infinite</u> number of user functions with up to three parameters.
- Save all the preceding possibilities for later use.
- Draw two-dimensional graphics.

Infinite means as long as your memory and the system can support it.

The main window is kept small. It can be moved over another program to see the values in it. There is a second window mode with more options. The window has a zoom function to make it bigger/smaller. It can draw and save a graph of functions.

# Main window

#### Small window

| 🐖 Expression Calculator                    | _ | ×      |
|--------------------------------------------|---|--------|
| 1:                                         |   | ▲<br>▼ |
| Calculate Clear Clear all ×[]              |   |        |
| Click the + button to open the full window |   |        |

#### **Full window**

| Calculate Clear Clear all Y []                                                                                     |
|--------------------------------------------------------------------------------------------------------------------|
|                                                                                                                    |
| O Deg ● Rad O Gra O*''' Zoom: + • Decimal fraction: 10 ∨                                                           |
| User functions:                                                                                                    |
| rad_deg(x)     pi_2 = 1.5707963268       deg_rad(x)     Remove       btw(x)     Change       Graphics     Graphics |
| Save       Function example:     SinAtan(x) = x/sor(1+x <sup>2</sup> )   Variable example:   Variable example:     |

#### Small window

Calculate: Calculates the expression

Clear: Clears the current expression

Clear all: Clears all the expression lines

Arrows next to the expression textbox:

Circulate between the saved expression lines or at the end, create a new one.

The up and down keyboard buttons have the same effect when the cursor is in the expression textbox.

Click '[]' to cycle thousands/decimal separator [], [.], [,] in the result x Click x before [] to insert 'x' at the cursor position in the expression textbox

#### **Full window**

Zoom +/-: Make the window with all its controls bigger or smaller

Remove: Remove the active 'user function' or 'user variable'

Change: Copy the selected 'user function' to the expression line. You can change it and click calculate to replace the old one.

Graphics: Open the ExpGraph program. The content of the expression line is put into the function textbox

Save: All expression lines, user functions and user values are saved for later usage

Clicking on the checkbox before the 'user function' or 'user variables', cycles between: show function/variable only, show the definition/value, show hidden functions.

When you click on a 'user function', its definition is shown in the status bar.



Expression calculator graphics (ExpGraph)

# **Graphics window**

| 🔄 Graphics opti | ions     |                | - 🗆 X          |  |
|-----------------|----------|----------------|----------------|--|
| Function:       |          |                |                |  |
| Image width:    | 1880     | Label ticks x: | 0              |  |
| Image height:   | 1000     | Label ticks y: | 0              |  |
| Origin x:       | 0        | Ticks x:       | 0              |  |
| Origin y:       | 0        | Ticks y:       | 0              |  |
|                 |          | Color graph:   | Red ~          |  |
| Minimum x:      | -10      | Font size:     | 9              |  |
| Maximum x:      | 10       | Clear previous | araob          |  |
| Minimum y:      | -10      | Use points     | gidpin         |  |
| Maximum y:      | 10       | 🗹 Draw axis    | Show gridlines |  |
| Zoom:           | + - Calc | graph Show gra | aph Save graph |  |

# Graphics

The "Expression Graphics" program can draw 2 dimensional functions of type:  $f(x) = x^2+1$ All the user functions and variables saved with the "Expression Calculator" can be used.

Here you can insert all the parameters needed to draw a function.

If label ticks x or y equals zero, the axis will be divided into 20 ticks.

To draw a new graphic, click inside the graphics image or close the window. The options dialog box behind it will reappear.

The graphic can be saved in .bmp format.

### Examples:

tan x 2x<sup>3</sup>-4x<sup>2</sup>+5 sin (x)\*exp(-.25x) 4x-7sin x (x<sup>2</sup>-5x) / (2x<sup>2</sup>-5)

| Graphics opti                          | ons               |                                                | _               |             | $\times$ |
|----------------------------------------|-------------------|------------------------------------------------|-----------------|-------------|----------|
| Function:                              | (x²+1)/(2x²-4x-1) |                                                |                 |             |          |
| Image width:<br>Image height:          | 620<br>470        | Label ticks x:<br>Label ticks y:               | 1               |             |          |
| Origin x:<br>Origin y:                 | 1.5               | Ticks x:<br>Ticks y:                           | 0.5<br>0.5      |             |          |
|                                        |                   | Color graph:                                   | Red             |             | ~        |
| Minimum x:                             | -3                | Font size:                                     | 12              |             |          |
| Maximum x:<br>Minimum y:<br>Maximum y: | 3<br>-5<br>5      | ☐ Clear previou<br>☐ Use points<br>☑ Draw axis | ıs graph<br>⊡Sł | now gridlir | nes      |
| Zoom:                                  | + · Cal           | lc graph Show gr                               | aph             | Save gr     | aph      |

•  $f(x) = (x^2+1)/(2x^3-4x-1)$ 



| 🔄 Graphics optio | ns               |                | -       |            | ×  |
|------------------|------------------|----------------|---------|------------|----|
| Function:        | sin x * exp(25x) |                |         |            |    |
| Image width:     | 700              | Label ticks x: | 0       |            |    |
| Image height:    | 300              | Label ticks y: | 2       |            |    |
| Origin x:        | 0                | Ticks x:       | 0       |            |    |
| Origin y:        | 0                | Ticks y:       | 2       |            |    |
|                  |                  | Color graph:   | Red     |            | ~  |
| Minimum x:       | -10              | Font size:     | 14      |            |    |
| Maximum x:       | 10               | Clear previou: | s graph |            |    |
| Minimum y:       | -10              | Use points     |         |            |    |
| Maximum y:       | 10               | 🗹 Draw axis    | 🗹 Sh    | ow gridlin | es |
| Zoom:            | + · Calc g       | raph Show gra  | aph     | Save gra   | ph |

- f(x) = tan x
  g(x) = sin x \* exp(-.25x)



| 🔄 Graphics optio | ns                    |                | -     |             | ×  |
|------------------|-----------------------|----------------|-------|-------------|----|
| Function:        | sin(x) * exp (25) * x |                |       |             |    |
| Image width:     | 700                   | Label ticks x: | 0     |             |    |
| Image height:    | 300                   | Label ticks y: | 2     |             |    |
| Origin x:        | 0                     | Ticks x:       | 0     |             |    |
| Origin y:        | 0                     | Ticks y:       | 2     |             |    |
|                  |                       | Color graph:   | Red   |             | ~  |
| Minimum x:       | -10                   | Font size:     | 14    |             |    |
| Maximum x:       | 10                    | Clear previous | graph |             |    |
| Minimum y:       | -10                   | Use points     | groph |             |    |
| Maximum y:       | 10                    | 🗹 Draw axis    | 🗹 Sho | ow gridline | es |
| Zoom:            | + - Calc gr           | aph Show gra   | iph   | Save graj   | ph |

# • sin(x) \* exp (-.25) \* x



# **Function overview**

The following functions are built-in:

## Trigonometric functions:

| sin(x) | sine    |
|--------|---------|
| cos(x) | cosine  |
| tan(x) | tangent |

### Inverse trigonometric functions:

| asin(x) | arc sine    |
|---------|-------------|
| acos(x) | arc cosine  |
| atan(x) | arc tangent |

### Hyperbolic functions:

| sinh(x)    | hyperbolic sine                                        |
|------------|--------------------------------------------------------|
| cosh(x)    | hyperbolic cosine                                      |
| tanh(x)    | hyperbolic tangent                                     |
|            |                                                        |
| exp(x)     | exponential: e^x                                       |
| ln(x)      | logarithm base e                                       |
| log(x)     | logarithm base 10, natural logarithm                   |
|            |                                                        |
| sqr(x)     | square root                                            |
| cur(x)     | cubic root                                             |
|            |                                                        |
| int(x)     | integer part                                           |
| floor(x)   | floor finds the largest integer not greater than x     |
| ceil(x)    | smallest integer greater than                          |
| abs(x)     | absolute value, or use   x                             |
|            |                                                        |
| sgn(x)     | Sign: -1 for x<0, 0 for x=0, 1 for x>0                 |
| frac(x)    | Fractional part of number                              |
| fact(x)    | Factorial :x! = x(x-1)(x-2)1 or use x! or (x+1)!       |
|            |                                                        |
| min(x,y)   | minimum                                                |
| max(x,y)   | maximum                                                |
| mod(x,y)   | x modulo y, or x % y, the remainder on dividing x by y |
| round(x,y) | rounds x to y values after decimal point               |

# Constants

The calculator knows these two constants: (However, you can create as many values as you wish!)

- e Euler's constant (or Euler-Mascheroni constant): base of natural logarithm : 2.7182818285...
- pi the ratio of circumference of a circle to its diameter: 3.1415926536...

# **User variables**

You can define an infinite number of variables.

In the expression line enter:

#### variablename = value

The name that you choose for a variable can be of any length, but it must start with a letter. The rest can be any character except a space or  $+-*/a|!^{n}$ 

Everything is case sensitive. So the name "FreeFall" is not the same as "freefall"!

The value can be any number or expression (in this case the result of the expression will be used).

The calculator only knows two variables 'pi' and 'e'. You can assign another value to them. When removing your assignment for 'pi' and 'e', the original values will be available again.

#### Some examples:

| g = 9.80665      | (Free fall)                                         |
|------------------|-----------------------------------------------------|
| c = 299792458    | (Speed of light)                                    |
| G = 6.672E-11    | (Gravitation)                                       |
| Vm = 2.241383E-2 | (Ideal gas)                                         |
| pi = 355/113     | Tsu Ch'ung-Chi's value: approximates pi to 6 places |

# **User functions**

You can define an infinite number of functions.

In the expression line enter:

1) A function with one parameter:

### functionname(x) = expression

The name you choose for a function can be of any length, but it must start with a letter. The rest can be any character except a space or  $+-*/a|!^{-1}$ 

Everything is case sensitive. So the name "SinAtan(x)" is not the same as "sinatan(x)"!

### Some examples:

 $f(x) = x^{2}+1$ bef2eur(x) = x/40.3399 g(x) = (f (x))^{2}-f(x)+1 func1(x) = 3x^{3}+5x^{2}+10x-1

2) Two parameters: functionname(x,y) = expression binominal(x,y) = x! / (y! \* (x-y)!)

3) Three parameters:

 $h(x,y,z) = x^2 + 3y^*z$ 

 Expression:
 Equivalent:

 f(13)
 f 13

 sin(f(13))
 sin f 13

 h( sin 23.5, 5+2, f(2) )
 bef2eur(1 000)

# **Expression syntax**

Whenever you enter an expression, the calculator evaluates the expression and returns the result.

Operators are used to perform calculations, make assignments.

- + Addition
- Subtraction
- \* Multiplication
- / Division
- = Assignment
- ! Factorial (or fact function)
- % Modulus (or mod function), gives the remainder of a division
- . Decimal point
- , Separator for function parameters

Space for readability

#### Order of precedence:

```
()
2 3
unary -
^
* / %
+ -
```

### Spaces can be used for readability:

Also inside values <u>Expression:</u> Equivalent:  $x^2+1456376^*(4!+ x^2+1456376^*(4!+2))$ 

2)

#### Examples: (The two notations are correct)

| Expression:      | <u>Equivalent:</u> |           |
|------------------|--------------------|-----------|
| x <sup>2</sup>   | x^2                |           |
| x <sup>3</sup>   | x^3                |           |
| 3x <sup>2</sup>  | 3*(x^2)            |           |
| sin x            | sin(x)             |           |
| sin x²           | sin(x^2)           |           |
| sin x^2          | (sin(x))^2         |           |
| x!               | fact(x)            |           |
| x                | abs(x)             |           |
| 10°12'14"        | 10d12m14s          | 10h12m14s |
|                  |                    |           |
| -10 <sup>2</sup> | -(10²)             |           |
| sin x²           | sin (x²)           |           |
| sin x^2          | (sin x)²           |           |
| sin -10          | sin (-10)          |           |
| sin -10²         | sin (-10²)         |           |
| 3x+7(12+3)       | 3*x + 7*(12+3)     |           |
| sin (tan (pi))   | sin tan pi         |           |

You can define variables that can be used in your expressions: see <u>User variables</u> You can define functions with up to three parameters: see <u>User functions</u>

# **Advanced topics**

- Functions defined with leading # sign are hidden. To see them check the checkbox 'User functions' until it is grayed.

 $#test(x,y) = 15x+y^2$ 

To use the function do not use the leading # sign! Just type: test(5)

Adding remarks to your expressions and functions:
 All characters found after a ';' are considered being comments
 Defining a function:

rad\_deg(x) = x\*180/pi ; Convert radians to degrees
deg\_rad(x) = x\*pi/180 ; Convert degrees to radians

After an expression:

355/113 ; Almost pi

# Examples

16/113+3 (12\*3+1)\*7-5 sin (pi/4) cos -10.2 12°3' + 15'34" 12h3m + 15m34s 10 000 + 20 540 + 7 070 ; money needed next month (15-6\*2)! 7 + |-45\*2.3| a = 15.5/4-4 pi\_2 = pi / 2 rad\_deg(x) = x\*180/pi ; Convert radians to degrees  $deg_rad(x) = x^*pi/180$ ; Convert degrees to radians bef2eur(x) = x/40.3399 ; Convert BEF to EUR eur2bef(x) = x\*40.3399 ; Convert EUR to BEF btw(x) = x\*1.21 ; Add 21% btw to x  $f(x,y) = x^{*}3+y$  $g(x) = x^2 + 1$  $h(x,y,z) = x+y^*z$ i(x,y) = g(x) / 2 + y $a = deg_rad(45)$ b = sin a rad\_deg sin(pi/4) sin deg\_rad 45 f(4,3) f(g(3), 2) -4 + h(g(3)\*2, f(g(1), 3), -4) I(2, 6)  $(x^{2}+1)/(2x^{3}-4x-1)$ sin x \* exp(-.25x)

# **Screen parts**

## Expression

Enter your expression in this edit box. Press 'enter' or click on the 'Calculate' button for evaluation and calculation of the result.

Use the up and down arrow to move between expression lines or use the buttons on the right side.

### Gotoexpr

Use up or down arrow to go to the next or previous expression line. After the last expression a new empty line is created.

# Exprlinenr

The active expression line.

## Result

Shows the result of the last calculation.

## Calculate

Evaluates and calculates the expression show in the expression line above.

### Clear

Clears and deletes the active expression line. It is removed from memory.

### Clearall

Clears and deletes all the expression lines present in memory.

# Degrees

Degrees, radians, gradients and degrees/minutes/seconds mode for calculation of the result

# Userfunction

Show all the functions created by the user. By clicking one time on a function it is highlighted and the formula is shown in the status bar. Double clicking on a function puts the function inside the expression line at cursor position.

# Uservariables

Show all the variables created by the user. By clicking one time on a variable it is highlighted. Double clicking on a variable puts the variable name inside the expression line at cursor position.

# Functionbox

When unchecked, all the function names are shown. When grayed, all the function names from normal and hidden functions are shown. When checked, all the function names are shown + function definitions.

### Variablesbox

When unchecked, all the variable names are shown. When checked, all the variables and the value they represent are shown

### Remove

Remove the selected user function and/or user variable.

## Change

Places the function definition inside the expression line. Change the function definition and press the calculate button.

# Graphics

Opens the "Expression Graphics" program and passes the current expression to it. All the functions and variables saved in ExpCalc.ini are usable with the graphics program.

### Save

Saves all the expression lines, user functions and user variables to the ExpCalc.ini file located in the same directory as the program.

### Statusbar

Shows an example function and variable definition.

Shows the last user function selected by the user.

To remove the last function definition click once on the status bar.

Double click to get program version information.

# Copyright

IF YOU DO NOT AGREE TO THE TERMS OF THIS AGREEMENT, DO NOT USE THIS SOFTWARE. PROMPTLY REMOVE IT FROM YOUR COMPUTER.

"Expression Calculator" is owned by Gunther WILLEMS. The software and documentation may be re-distributed in its entirety and unmodified. "Expression Calculator" is free. It may not be distributed (with or without other products) for profit without the author's expressed written permission.

NO WARRANTY: Any use of the Software is at your own risk.